Search results

Search for "dihydroxyacetone synthase" in Full Text gives 1 result(s) in Beilstein Journal of Organic Chemistry.

Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis

  • Martina Geier,
  • Christoph Brandner,
  • Gernot A. Strohmeier,
  • Mélanie Hall,
  • Franz S. Hartner and
  • Anton Glieder

Beilstein J. Org. Chem. 2015, 11, 1741–1748, doi:10.3762/bjoc.11.190

Graphical Abstract
  • utilization pathway of Pichia pastoris for improved NADH regeneration. By deleting the genes coding for dihydroxyacetone synthase isoform 1 and 2 (DAS1 and DAS2), NADH regeneration via methanol oxidation (dissimilation) was increased significantly. The resulting Δdas1 Δdas2 strain performed better in
  • an efficient and easy-to-use strategy for NADH-dependent whole-cell conversions. At the same time methanol serves as co-solvent, inductor for catalyst and cofactor regeneration pathway expression and source of energy. Keywords: bioreduction; cofactor regeneration; dihydroxyacetone synthase; methanol
  • generated via the dissimilatory pathway and full oxidation of the single carbon molecule methanol. Alternatively, in a simplified model formaldehyde is condensed with D-xylulose-5-phosphate and subsequently converted into dihydroxyacetone and D-glyceraldehyde-3-phosphate by dihydroxyacetone synthase (DAS
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2015
Other Beilstein-Institut Open Science Activities